

 1 [Ŝǎǎƻƴ мпΥ wŜŀŎǝƻƴ ¢ƛƳŜǊ

What you will need

¶ CloudProfessor (CPF)

¶ Button

¶ RGB LED

¶ Arduino Leonardo

¶ Arduino Shield

¶ USB cable

Learning Expectations (how learning / progress will be demonstrated)

All Use sequences of instructions.

Most Explain how their app works.

Some Use logical reasoning to detect errors in their algorithms.

Learning Objectives

 Design and create an app which uses sequence, selection, repetition and variables.

Program, debug and refine the code for their app.

Understand and use selection in an algorithm (IF, Else and Else if)

Overview

In this lesson, students will explore the Date function in JavaScript and use what they learn to create a reaction timer game

using a button and RGB LED.

Curriculum Links (Computing PoS)

Designs simple algorithms using loops, and selection i.e. if statements. (AL)

Uses logical reasoning to predict outcomes. (AL) Detects and corrects errors i.e. debugging, in algorithms. (AL)

Creates programs that implement algorithms to achieve given goals. (AL)

Understands that programming bridges the gap between algorithmic solutions and computers. (AB)

/ƻƳǇǳǘŀǝƻƴŀƭ ¢ƘƛƴƪƛƴƎ /ƻƴŎŜǇǘǎΥ AB = Abstraction; DE = Decomposition; AL = Algorithmic Thinking; EV = Evaluation;

GE = Generalisation.

Lesson 14
CPF Reaction Timer

1

 2 [Ŝǎǎƻƴ мпΥ wŜŀŎǝƻƴ ¢ƛƳŜǊ

1. Connect the power of CloudProfessor then press and hold the power button for two seconds; it will turn on and the

power indicator will light up.

2. Insert the Arduino Shield into Arduino Leonardo and use the USB cable to connect the CloudProfessor with Arduino

Leonardo. Attach the button to port D6 and the RGB LED component to port D7.

3. When the CloudProfessor detects the Arduino Leonardo, a notification will appear on your device; click the

notification to launch the !ǊŘǳƛƴƻ [ŜƻƴŀǊŘƻ APP, and select the /tC !ǊŘǳƛƴƻ app. Click on {ƻŎƪŜǘ aƻŘŜΦ

4. Press the ŜȄŜŎǳǘŜ button to enter the ŎƻƴǘǊƻƭ ǳǎŜǊ ƛƴǘŜǊŦŀŎŜ (UI).

5. Press the ŜŘƛǘ button to enter the ǇǊƻƎǊŀƳ ŜŘƛǝƴƎ ǇŀƎŜ.

Setup instructions 2

1

2

3

CPF Arduino app

Edit button

Execute button

Control user interface (UI) Program editing page

 3 [Ŝǎǎƻƴ мпΥ wŜŀŎǝƻƴ ¢ƛƳŜǊ

Code recap (JavaScript)

LetΩs explore some of the code used in the previous lessons.

1. cpf.set(άrgb ledέΣ лΣ лΣ лύΤ

The ŎǇŦΦǎŜǘόάǊƎō ƭŜŘέΣ ǊΣ ƎΣ ōύΤ statement sets the colour of the attached RGB LED.

2. If / else:

The ƛŦ κ ŜƭǎŜ statement is used to conditionally run code

depending on whether a Boolean condition is true or false.

In this example from lesson 1, if the light sensor value is less than (<) 500, the

RGB LED light will light up (based on the values taken from the UI); or else

(else), if the light sensor value is greater than (>) 500, the RGB LED light will

automatically turn off: cpf.set(άrgb ledέΣ лΣ лΣ лύΤ

3. Math.random()

Through Math.random(), a random number between 0 and 0.999999 is generated. If we want to generate a whole

number in a range such as м—нрр we first need to multiply the result of the random function by 255 and then

round the result to produce a whole number e.g.,

4. cpf.sleep(1000);

The ŎǇŦΦǎƭŜŜǇόмлллύΤ statement is used to pause the code (time set in milliseconds). In the example above, the

program is paused for 1000 milliseconds (1 second).

5. ui.set(άcontentέΣ text);

The ǳƛΦǎŜǘόάŎƻƴǘŜƴǘέΣ ǘŜȄǘύΤ statement, is used to display a message directly on the user interface UI.

3

 4 [Ŝǎǎƻƴ мпΥ wŜŀŎǝƻƴ ¢ƛƳŜǊ

Step-by-step instructions (JavaScript)

LetΩs write the code for our reaction timer.

1. Clear the existing code so that you have a blank canvas to create your new program. Press and hold on a selection

of code and click on ΩSelect allΩ όмύ. Click on ΨCutΩ όнύ to create a blank canvas όоύ.

bƻǘŜΥ You can return to the original

program at any time by clicking on

the restore icon in the Save/load

menu.

2. First, letΩs give our new script a name. Click on line 1 and type in the following:

//CPF Theremin

3. Next, we need to create a variable to store the status of the button (pressed = true or false). Click on line 3 and type

in the following:

var buttonPressed=false;

4. Next, we need to generate a random pause between 1000 and 10000 milliseconds (1 to 10 seconds). Math.random

() generates a random number between 0 and 0.999999. If we want to generate a whole number in a range of

млл—мллллΣ we first need to multiply the result of the random function by 10000 and then round the result to

produce a whole number. Click on line 5 and type in the following:

var rand = Math.round(Math.random() * 10000);

5. Next, we need to pause the code for the random number of time. Once this time has elapsed, we need to turn alert

the player by turning on the RGB LED. Click on line 7 and type in the following:

cpf.sleep(rand);

cpf.set(άsocket d7έΣ нррΣ лΣ лύΤ

6. At this point, we also need to start the timer. Click on line 10 and type the following:

var startTime=new Date();

7. We need to keep running our code until the player presses the button (while button not pressed). For this, we will

use a ǿƘƛƭŜόύ loop. Click on line 12 and type the following (making sure you leave a blank line on line 13):

while(buttonPressed == false) {

}

8. At this point, we need to keep checking the status of the button to see if it has been pressed. Click on line 13 and

type the following:

d6 = cpf.get(άsocket d6έύΤ

4

1

3

2

 5 [Ŝǎǎƻƴ мпΥ wŜŀŎǝƻƴ ¢ƛƳŜǊ

Step-by-step instructions (JavaScript)

9. Next, we need to write the condition which checks to see if the button has been pressed (button = 1). For this we

will use an IF statement. Click on line 15 and type in the following (making sure you leave a blank line on line 16):

if(d6 == 1) {

}

10. As soon as the player presses the button we need to record the end time and store this in a new

variable. Click on line 17 and type in the following:

var endTime=new Date();

11. Now that we have the start time and end time, we can calculate the response time by subtracting the start time

form the end time (response time = end time - start time). The resulting response will be displayed in

milliseconds. To convert the time into seconds we simply divide the result by 1000. Click on line 19 and type in the

following:

var responseTime=(endTime.getTime()-startTime.getTime())/1000;

12. Once we have the playerΩs response time in seconds, we can display it on the user interface (UI). Click on line 21 and

type in the following:

ui.set(άcontentέΣ responseTime);

13. Finally, once the player has pressed the button and the response time has been displayed on the screen, we need to

stop the program. Click on line 22 and type in the following:

buttonPressed=true;

14. Run your code.

4

Modify your code so that the RGB LED starts amber before turning red after the allotted time. When the

button is pressed, change the RGB LED to green. IƛƴǘΥ cpf.set(άsocket d7έΣ лΣ нррΣ лύΤ

Your finished code should look like this.

 6 [Ŝǎǎƻƴ мпΥ wŜŀŎǝƻƴ ¢ƛƳŜǊ

Extension

Challenge students to add a condition that displays a message in the UI based on the playerΩs reaction time e.g. if reaction

time is less than 0.3 seconds display άAwesomeέ else display άToo slow!έ etc.

IƛƴǘΥ

if (responseTime <= 0.3) {

 ui.set(άcontentέΣ άAwesome!έύΤ

}

Differentiation

To support students, provide step by step guides.

To stretch students ask them to create a flowchart / pseudocode of their code first or code their solution using JavaScript.

Homework

Students to write up a summary of what theyΩve learned; students to include screenshots and snippets of their code in

their summary.

Students to comment their code explaining how it works.

Links

Online reaction timer: ƘǧǇǎΥκκŦŀŎǳƭǘȅΦǿŀǎƘƛƴƎǘƻƴΦŜŘǳκŎƘǳŘƭŜǊκƧŀǾŀκǊŜŘƎǊŜŜƴΦƘǘƳƭ

5ƛǎŎƭŀƛƳŜǊΥ Use these sites at your own risk. Acer is not responsible for the content of external Internet sites. We

recommend that you check the suitability of any recommended websites links before giving them to students.

5

6

7

8

